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Abstract 

A theoretical and computational analysis is presented of the motion of a 

single one-dimensional electron, represented by a wave packet of given av- 

erage momentum and position, in a fixed potential profile in presence of 

electron-phonon interaction. The electron propagation can take place with 

or without an external bias. A perturbative approach is used in the theoreti- 

cal framework of the Wigner function accounting for the continuous quantum 

dynamical evolution of the scattering process. The unperturbed hamiltonian 

contains the one-dimensional potential profile and the external field, while the 

electron-phonon coupling potential is considered as the perturbation hamilto- 

nian. Computational results are presented for the case of an electron propa- 

gating a) without applied forces, b) through a region where a uniform electric 

field is applied, and c) in a double-barrier potential in resonance conditions, 

due to the relevance of these physical cases for practical applications. 
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I. INTRODUCTION 

The quantum theory of electron transport has been extensively studied in the last decade 

in connection with the experimental development of mesoscopic structures and the engineer- 

ing of low-dimensional electronic devices (see, e.g., [1-3]). In fact it appears that the lenght 

of the active region of many submicron structures is short enough to be of the order of the 

inelastic mean-free path (i.e., the distance over which carriers mantain phase information). 

Thus it is expected that quantum effects must appear in such devices. 

Scattering destroys the phase coherence of the electron wave function and thus many rel- 

evant quantum effects. In most cases the scattering agents are acoustic and optical phonons. 

The efficiency of these mechanisms is related to the crystal temperature, but they can be 

present even at very low temperatures since acoustic phonons allow, in principle, exchange 

of arbitrary small energies. 

Coherent transport, i.e.. carrier transport in absence of phase-breaking scattering pro- 

cesses, has been widely treated in the literature through many possible theoretical ap- 

proaches. Some attempts at including phonon scattering into the quantum theory have been 

presented in the literature, mainly based on simplified approaches where a relaxation-time 

approximation is used [4,5] or where the scattering is treated in the semiclassical approxima- 

tion and the Wigner function is used as a classical distribution function [6] which, however, 

heavily deteriorates the quality of the rigorous quantum approach. 

In the present paper a quantum theory of electron transport in semiconductors including 

coherent.propagation and phonon interaction is presented in the framework of the Wigner 

approach. The use of the Wigner function (WF) has been found particularly appropriate 

for the theoretical analysis of quantum problems since it combines the rigorous quantum 

mechanical approach with the more familiar representation of phase space. 

An equation is obtained for such a function by using an interaction picture where the 

electron potential profile , including the external bias, besides the free-phonon term, is in- 

corporated in the unperturbed Hamiltonian. The equation is then expanded iteratively, and 



the corresponding terms will contain one, two, ... n phonon interaction processes as it hap- 

pens in the semiclassical case. In the present approach the continuum quantum dynamical 

evolution of the electron system during the phonon interaction can be followed. 

A numerical technique has been developed which, at present, evaluates terms in the 

expansion of the WF up to the second order in the interaction hamiltonian, but in principle 

it can be extended to higher orders. 

Section II illustrates the theoretical approach, while in Section III the numerical proce- 

dure used in the present paper is described in details. Results are shown in Section IV for 

a single electron wave packet moving a) in absence of external forces, b) in presence of a 

uniform electric field, and c) in a resonant tunnelling structure in resonance conditions. The 

physical situation of a single phorton emission during the propagation is considered in the 

three cases above. Some conclusions and perspectives are reported in Section V. 

II. THEORETICAL APPROACH 

A three-dimensional system of independent electrons interacting with phonons is con- 

sidered here with translational invariance along two directions (x-y). The unperturbed 

hamiltonian H0 of the system contains the electron hamiltonian (including the potential 

profile V(z)), and the free-phonon term: 

,2 

Ho = ^ + n*) + £aWH (i) 

where p and m are the electron quasi-momentum and effective mass, respectively. For 

simplicity m is assumed constant along the device. V(z) is the electron potential profile 

(including the applied voltage), aq and a* are the annihilation and creation operators of 

the phonon mode q with frequency uq. The electron-phonon interaction is described by the 

Hamiltonian: 

Hep = J2 ^hF(q)[aqe
i«r - aje"*«"] (2) 



where F(q) is a function that depends on the considered type of electron-phonon interaction. 

In our case polar optical phonons have been considered [7]. 

Three characteristic space regions are of interest for this problem. The potential is 

supposed to vary only inside the "P" region; the WF is evaluated on a larger "D:: region 

which defines the device of interest; finally the system is supposed to be enclosed in a larger 

universe "U" region, so that at the boundaries of U all wave functions are supposed to vanish 

and in order to evaluate the WF only correlations within this region must be considered. 

The present theoretical approach [8] starts from the definition of the WF, generalized to 

include a single electron (or, equivalently, many independent electrons) and phonons into 

the physical system of interest: 

A,(r, P; nq, n'q) = ~zj dr'e'Wp(r + |, nq; r - ~, n'q) (3) 

where p is the density matrix of the electron-phonon system. 

For any given basis {|0, >} for the electron states, it is possible to move from the WF 

to the density-matrix representation and viceversa by means of the following coefficients [9]: 

fim{r,p) = -^jdr'e-^r'<r+r-\(f)l><(f)m\r-T-> (4) 

according to the following equations: 

fw(r,p;nq,n'q;t) = ]T fn,n'(r,p)p{n,nq;n',n';t) (5) 

p(n, nq] n', n'ql t) = h3 j dp f dr/n*n,(r, p)/„,(r, p; nq, n'q; t) (6) 

where p(n, nq\ n', n'q; t) is the density matrix in the basis {\<f>t >} 

Starting from the density-matrix operator in the interaction picture with H0 in Eq.l 

as unperturbed hamiltonian, we can construct the associated WF /„,, which satisfies the 

following equation of motion: 

^JUr,P;nq,n'q]t) = ~ J dv'e-^' < r +T-,nq\[W(t),p)\r -T-n'q > (7) 
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where %'{t) — -^ is the normalized interaction Hamiltonian in the interaction picture. 

After formal integration we obtain: 

fw(r,p;nq,nq>;t) = 

/tü(r,p;n9,7ty;0) + /  di'^/nn/(r,p) 
nn' 

J2Jlh3     dr' / dP'{K'{n,nq]m,mq;t')f^n,(r\p')fw(r'.p'-mq,nq>;t') - 

/;m(r',p')A,(r', p'; nq,m'q] 1?)H'{m,mq] n',ry; *')} (8) 

The same equation can be transformed into the Schrödinger picture as follows; using the 

coefficients in Eq.4 we obtain the density matrix in the interaction picture; then we transform 

this quantity to the Schrödinger picture, and return to the WF by means of the same 

coefficients. We finally obtain the following expression: 

fw(r.,P;nq,n'q]t) = /i3 £/„n<(r, pK^--^'.^ 
nn' 

I dT'dp'f*n,(r', p')/u,(r', p'; nq, n'g; t) (9) 

Eq. 8 can be substituted into itself to obtain the Neumann series for our problem. 

When electronic properties are searched for, a trace over the phonon variables must 

be performed, so that we are here interested in diagonal matrix elements in the phonon 

coordinates at time t. Furthermore, since we are interested in studying a single electron- 

phonon scattering process, we assume that at the initial time t = 0 electrons and phonons 

are not interacting, and the phonons are in the diagonal equilibrium state. This initial 

physical condition is close to the semiclassical description of a scattering event. 

The zero-order term in the perturbation Hamiltonian yields the ballistic evolution of the 

WF: 

/i°>(r, p; nq, nq] t) = h3 £ /BB,(r, p)c-<M«.",)-«(n'.«,)}* 
nn' 

I dv' I dp'f*nl(r', p')/u,(r', p', nq„ nq; 0) (10) 

The first-order correction contains a single matrix element of the electron-phonon interaction 



hamiltonian. Under the hypothesis of initial and final diagonal phonon states the first-order 

corrections do not contribute to our analysis. 

The second-order terms contain two matrix elements of the perturbation hamiltonian 

and can provide diagonal contributions at time t starting from diagonal contributions at 

t = 0, corresponding to a single phonon scattering. The quantum process can then be a 

"virtual" process if the coordinates of the phonon bath are the same in the initial and final 

states, or it can be a "real" process if the final phonon state contains one phonon more/less 

than the initial state. It is well known that virtual processes contribute to the self energy 

associated to the quantum state and reduce to the "out-scattering" term of the Boltzmann 

equation in the semiclassical limit, while real processes contribute to the "in-scattering" 

term. 

As an example, the second-order correction associated to real-emission processes consid- 

ered in the numerical calculations presented in this paper is given by: 

A/(^)(r,p,t) = 

q IV ms 

T^E\l, I1, s, m; q: t)h3 j dr'dp'f^r', p')fw(r', p', 0) (11) 

In the above equation T(r,£;) (/,/', s,m;q;t) contains the time-dependence of the considered 

perturbative correction: 

7ir'E)(l:l',s,m;q;t) = 

e-i(u;i-w;/)t _ e-i(ujm-u>s)t 

(U)V - U)s + U)q)(u)m -UJi+ U>i> - U)s) 

p~i(ljJrfl—Wll—Uq)t        p — i{uil—Wil)t 

+ 

(LOV - U)s + UJq)(u)m -u)t- coq) ^   ^' 

hun is the energy associated to the electron state \<f>n > and C(m,q,l) is the matrix element 

of eiqr between the electron eigenstates \<f)m > and \4>i >. 

Eq. 12 is of the same nature of the time-dependent coefficient involved in the derivation 

of the Fermi Golden Rule. In that case however the transition induced by the perturbation 



is considered between two eigenstates of the unperturbed Hamiltonian, while in the present 

case the "transition" occurs between two matrix elements of the density operator. 

III. COMPUTATIONAL APPROACH 

The perturbative corrections contained in the Neumann series obtained above can be 

evaluated with a suitable numerical technique, provided that the unperturbed electron eigen- 

values and eigenvectors are known. However formidable numerical difficulties related to in- 

terference of quantum oscillations allow to evaluate, at present, terms up to the second-order, 

corresponding to a single scattering process. 

A numerical solution of the time-independent Schrödinger equation for the unperturbed 

hamiltonian is here obtained for any given one-dimensional potential profile, including the 

heterostructure profile due to band discontinuity and, possibly, to an applied potential. 

The state of the "sampling" electron is chosen at the initial time t = 0 in such a way 

to have a gaussian probability distribution in position and momentum space (minimum- 

uncertainty wave packet). The initial state is then propagated according to the time evo- 

lution associated to the unperturbed hamiltonian and the corresponding WF is evaluated 

accordingly. At time ts we assume that the electron-phonon interaction is switched on. The 

second-order perturbative correction to the WF is then evaluated for a real_single-phonon 

process at the observation time t. 

Since only the second-order correction is evaluated from the numerical procedure, a time 

decaying factor e~r(*~ts) has been associated to the unperturbed state for t > ts to account for 

the fact that, as time evolves from the initial condition, the scattering-out virtual processes 

decrease the unperturbed WF. Correspondingly the time-dependence of the second-order 

correction in Eq. 12 is modified as follows: 

T^r'E)(lJ',s,m;q;t) = 
uv - us + u)q + iV     e-i(uTn-us-2ir)t _ e-i(ü,,-üv)t 

(City  - U)s + U)q)
2 + r2       (Us - U)m + LJl - bJ{> + ^^ 



[U}m ~ UJi - UJq)
2 - r2 n ^1J/ 

IV. RESULTS 

Three cases of single-electron propagation are presented in this paper as important ex- 

amples of application of the present theoretical approach. When a potential profile is present 

the eigenstates and eigenvalues of the system have been determined through a numerical 

solution of the associated Schrödinger equation. 

In all cases the lenght of the U region is 104A, which allows to deal with normalized 

electron states, but it is large enough to not influence the electron dynamics under inves- 

tigation. An effective mass 0.067mo has been used and the electron initial gaussian wave 

packet is centered around the energy 0.03eV, which corresponds to a resonant state of the 

quantum well between the two barriers discussed in Section IV C. As it regards the dynam- 

ical situation, a scattering process has been studied where, in semiclassical terms, the initial 

positive electron wave vector (k{ = 0.23 x lO9™-1) is almost reversed by a phonon emission 

(kf ■= -0.20 x 109m_1). The phonon equivalent temperature and wave vector have been 

chosen as T = 100K and q = 0.43 x lO9™"1. The unperturbed WF has been exponentially 

damped with time through a damping factor T"1 = l.hps. 

The amplitude of the second-order correction of the WF (scattered electron) will be 

shown artificially amplified for graphic reasons. This correction is always many orders of 

magnitude smaller than the WF of the original wave packet since it is related to the probabil- 

ity of finding the electron scattered by a single phonon mode. The lifetime of the scattering 

electron, approximated with an exponential decrease of the unperturbed WF, is in fact due 

to the sum over all possible phonon out-scattering events. 



A. Free propagation with phonon interaction 

This is the simplest of the three considered cases, where only the quantum dynamics of 

the phonon scattering is studied without other complications due to electric fields or internal 

potential structures. The electron-phonon interaction is switched on at t=.2 ps after the 

initial conditions. 

The results are shown in Fig.l. The electron system is "observed" at the initial time t = 0 

and at 0.5 and Ips. The unperturbed WF of the scattering electron and the second-order 

correction (scattered electron)are shown together in separate arbitrary units, as discussed 

above. 

It can be seen that the unperturbed electron moves towards the right with positive k. 

while the scattered electron moves towards the left with the negative k given by momentum 

conservation. As time increases the WF contour of the original electron elongates and it is 

slightly tilted. In order to understand this effect we note that each point of the WF for a free 

particle follows a classical trajectory [10], so that the higher-momentum components move 

faster than the lower-momentum components. In the Schrödinger wave-function description 

this corresponds to the well known wave-packet broadening with time; in the (q, p) Wigner 

representation the effect is described in more details. Furthermore, the height of the WF for 

the scattering electron is lowered by both the broadening of the electron wave packet and 

by its lifetime T-1. The quantum continuum dynamics of the emission process is apparent 

from the elongated shape of the scattered WF. In contrast, the semiclassical approach would 

select a given final state in the phase-space domain where the WF is different from zero. 

B. Propagation in presence of an electric field with phonon interaction 

As a further example the propagation of an electron wave packet through a region of 

constant electric field has been examined. An electric field of strength E = bkV/cm ex- 

tending over a length 2000.4 has been considered.  The natural broadening of the electron 



wave.packet is amplified while the electron crosses the electric-field region. Fig. 2 shows 

the evolution Of the unperturbed WF projected onto the plane (z,kz). A deformation of 

the form of the WF is observed while the wave packet crosses the field area (from -lOOOA 

to 1000/1), due to the fact that, as time increases, the front of the WF experiences the 

field acceleration before the rear part. As the electron leaves the electric-field region a more 

elongated shape is observed due to the increased values of the momentum (and therefore 

velocity) components 

Phonon scattering is switched on at t = 0.2ps and the second-order perturbative correc- 

tion to the WF due to the scattering process is evaluated at three successive times, as shown 

in Fig. 3 for the case E = O.bkV/cm between -lOOOA and -1000Ä. Again the scattered- 

electron WF is plotted together with the scattering-electron WF after a suitable rescaling 

and it is concentrated in k-space around the k value of the classical momentum conservation. 

It is observed at increasing times that the scattered electron is absent at the larger values of 

z reached by the scattering electron. In other words the scattering is no more effective after 

the electron has completely crossed the field area. This is so because the increased energy of 

the electron is no more compatible with energy and momentum conservation in an emission 

process of the mode (q, u)q). This is a manifestation of the intra-collision field effect and, for 

this reason, we have chosen a lower field value for the data in Fig. 3 (E = 0.5kV/cm). where 

some emission is still observed in the electric field region, while this is completely absent for 

the case E = 5kV/cm as in Fig. 2. 

C. Propagation through a double barrier with phonon interaction 

A symmetrical double-barrier potential profile has been considered of height 0.2 eV, with 

barrier widths of 20Ä and well width of lOOA. 

The WF associated to the unperturbed motion of the electron wave packet is shown 

in Fig. 4. Due to the strong resonant condition of the electron wave packet, at 1 ps the 

WF exhibits a structure related to a large correlation effect in the phase space around 
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z = 0 (where the potential structure is located). At 1.5 ps the reflected and transmitted 

components of the electron wave packet have already emerged. The correlation effect can 

still be seen around z = 0 due to the coherence between the transmitted and the reflected 

part of the electron wave function. 

Fig. 5 shows the scattered-electron WF at \ps and 1.5ps. The interaction has been 

switched on at 0.5ps when the incoming electron approaches the double-barrier structure. 

At the shortest observation time a strong component in the perturbative correction ap- 

pears in the phase space associated to the part of the electron wave packet scattered by the 

phonon before hitting the double barrier (let us call 'a' this type of event). As mentioned 

above, in our numerical case the final momentum (k = — 2.e8ra~1) is almost reversed with 

respect to the value before scattering. At t = l.bps other structures appear in the perturba- 

tive correction associated to positive z values corresponding to the electron scattered after 

transmission. The components associated to the negative p value represent the electron 

back-scattered after passing the potential profile (type 'b' event), while the components as- 

sociated to the positive p are related to the electron that suffered the same back-scattering 

some time before, and has then been reflected towards the right by the double barrier (type 

'c' event). The structure around vanishing p values at positive positions is due to the corre- 

lation between the two structures just described (i.e., between type 'b' and 'c' events). The 

structure around vanishing p values at negative positions is due to the correction between 

the two structures indicated as type 'a' and type 'c'. Finally, also the WF due to the cor- 

relation between events of type V and type 'b' can be seen in the figure at negative p and 

negative positions close to zero. 

V. CONCLUSIONS 

A theoretical approach to quantum transport based on the WF formalism has been used 

to study the quantum propagation of an electron wave packet in presence of a single phonon 

scattering event, taking into account the full continuum quantum dynamics of the interaction 
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in time. Three cases of increasing complexity have been examined, i.e., a) the effect of the 

quantum collision over a free propagation in space, where the collision duration allows for a 

distributions of final electron positions, b) the production of intra-collision field effect when 

the phonon interaction takes place while an electron wave packet propagates through a finite 

region of constant electric field, and finally c) the complex quantum-dynamical interference 

between potential profile and scattering when a wave packet propagates across a double- 

barrier structure in resonace conditions. 

The analysis of quantum phonon scattering based on the theoretical approach presented 

in this paper is in progress: the application to the case of electrons in open systems is being 

analysed. In this case an incoming flux of particles from given boundaries of a quantum 

device must be considered instead of a single wave packet. 
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VII. FIGURE CAPTIONS 

Fig.l : Unperturbed WF (scattering electron) and the second-order correction (scattered 

electron) in a 3D plot at different times for an electron which propagates without external 

fields from t = 0 and experiences a quantum phonon emission beginning at t = 0.2ps after 

the initial condition (see text). 

Fig. 2 : Unperturbed WF (scattering electron) and the second-order correction (scattered 

electron) in a 2D (z,kz) plot at different times for an electron which crosses a region of 

constant field (E = 5kV/cm). 

Fig. 3 : Unperturbed WF (scattering electron) and the second-order correction (scattered 

electron) in a 3D plot at different times for an electron which crosses a region of constant 

field (E = 0.5/cV/cm) and experiences a quantum phonon emission beginning at t = 0:2ps 

after the initial condition (see text). 

Fig. 4 : Unperturbed WF (scattering electron) at different times for an electron wave packet 

crossing a double barrier in resonant conditions (see text). 

Fig.  5 :  Second-order correction to the WF (scattered electron) at different times for the 
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electron wave packet reported in Fig.  4 during a quantum phonon emission beginning'at 

t — 0.5ps after the initial condition (see text). 
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